Parameter estimation in spiking neural networks: a reverse-engineering approach

This paper presents a reverse engineering approach for parameter estimation in spiking neural networks (SNNs). We consider the deterministic evolution of a time-discretized network with spiking neurons, where synaptic transmission has delays, modeled as a neural network of the generalized integrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2012-04, Vol.9 (2), p.026024-1-14
Hauptverfasser: Rostro-Gonzalez, H, Cessac, B, Vieville, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a reverse engineering approach for parameter estimation in spiking neural networks (SNNs). We consider the deterministic evolution of a time-discretized network with spiking neurons, where synaptic transmission has delays, modeled as a neural network of the generalized integrate and fire type. Our approach aims at by-passing the fact that the parameter estimation in SNN results in a non-deterministic polynomial-time hard problem when delays are to be considered. Here, this assumption has been reformulated as a linear programming (LP) problem in order to perform the solution in a polynomial time. Besides, the LP problem formulation makes the fact that the reverse engineering of a neural network can be performed from the observation of the spike times explicit. Furthermore, we point out how the LP adjustment mechanism is local to each neuron and has the same structure as a 'Hebbian' rule. Finally, we present a generalization of this approach to the design of input-output (I/O) transformations as a practical method to 'program' a spiking network, i.e. find a set of parameters allowing us to exactly reproduce the network output, given an input. Numerical verifications and illustrations are provided.
ISSN:1741-2560
1741-2552
DOI:10.1088/1741-2560/9/2/026024