Preliminary flood risk assessment: the case of Athens
Flood mapping, especially in urban areas, is a demanding task requiring substantial (and usually unavailable) data. However, with the recent introduction of the EU Floods Directive (2007/60/EC), the need for reliable, but cost effective, risk mapping at the regional scale is rising in the policy age...
Gespeichert in:
Veröffentlicht in: | Natural hazards (Dordrecht) 2012-03, Vol.61 (2), p.441-468 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flood mapping, especially in urban areas, is a demanding task requiring substantial (and usually unavailable) data. However, with the recent introduction of the EU Floods Directive (2007/60/EC), the need for reliable, but cost effective, risk mapping at the regional scale is rising in the policy agenda. Methods are therefore required to allow for efficiently undertaking what the Directive terms “preliminary flood risk assessment,” in other words a screening of areas that could potentially be at risk of flooding and that consequently merit more detailed attention and analysis. Such methods cannot rely on modeling, as this would require more data and effort that is reasonable for this high-level, screening phase. This is especially true in urban areas, where modeling requires knowledge of the detailed urban terrain, the drainage networks, and their interactions. A GIS-based multicriteria flood risk assessment methodology was therefore developed and applied for the mapping of flood risk in urban areas. This approach quantifies the spatial distribution of flood risk and is able to deal with uncertainties in criteria values and to examine their influence on the overall flood risk assessment. It can further assess the spatially variable reliability of the resulting maps on the basis of the choice of method used to develop the maps. The approach is applied to the Greater Athens area and validated for its central and most urban part. A GIS database of economic, social, and environmental criteria contributing to flood risk was created. Three different multicriteria decision rules (Analytical Hierarchy Process, Weighted Linear Combination and Ordered Weighting Averaging) were applied, to produce the overall flood risk map of the area. To implement this methodology, the IDRISI Andes GIS software was customized and used. It is concluded that the results of the analysis are a reasonable representation of actual flood risk, on the basis of their comparison with historical flood events. |
---|---|
ISSN: | 0921-030X 1573-0840 |
DOI: | 10.1007/s11069-011-9930-5 |