Anisotropic Effects of Mechanical Strain on Neural Crest Stem Cells
Neural crest stem cells (NCSCs) are multipotent and play an important role during the development and tissue regeneration. However, the anisotropic effects of mechanical strain on NCSCs are not known. To investigate the anisotropic mechanosensing by NCSCs, NCSCs derived from induced pluripotent stem...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2012-03, Vol.40 (3), p.598-605 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neural crest stem cells (NCSCs) are multipotent and play an important role during the development and tissue regeneration. However, the anisotropic effects of mechanical strain on NCSCs are not known. To investigate the anisotropic mechanosensing by NCSCs, NCSCs derived from induced pluripotent stem cells were cultured on micropatterned membranes, and subjected to cyclic uniaxial strain in the direction parallel or perpendicular to the microgrooves. Cell and nuclear shape were both regulated by micropatterning and mechanical strain. Among the unpatterned, parallel-patterned and perpendicular-patterned groups, mechanical strain caused an increase in histone deacetylase activity in the parallel-patterned group, accompanied by the increase of cell proliferation. In addition, mechanical strain increased the expression of contractile marker calponin-1 but not other differentiation markers in the unpatterned and parallel-patterned groups. These results demonstrated that NCSCs responded differently to the anisotropic mechanical environment. Understanding the mechanical regulation of NCSCs will reveal the role of mechanical factors in NCSC differentiation during development, and provide a basis for using NCSCs for tissue engineering. |
---|---|
ISSN: | 0090-6964 1573-9686 |
DOI: | 10.1007/s10439-011-0403-5 |