Predictability of flood pulse driven assembly rules for restoration of a floodplain plant community

Community assembly rules were formulated to evaluate the restoration of wet prairie along the periphery of the floodplain of the Kissimmee River in central Florida. Restoration of this plant community is expected to be driven by the reestablishment of flood pulse hydrology following the ongoing dech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wetlands ecology and management 2012-02, Vol.20 (1), p.59-75
Hauptverfasser: Toth, Louis A, van der Valk, Arnold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Community assembly rules were formulated to evaluate the restoration of wet prairie along the periphery of the floodplain of the Kissimmee River in central Florida. Restoration of this plant community is expected to be driven by the reestablishment of flood pulse hydrology following the ongoing dechannelization of the river. Assembly rules were assessed with plant species composition and cover data from 15 permanent plots on the restored floodplain and 6 control plots on the channelized floodplain. These sites were sampled biannually from 1998 to 2010. Mean annual hydroperiods and depths confirmed that the frequency, duration and amplitude of post-restoration flood pulses at study sites were similar to historic reference locations. Elimination of pasture grasses (primarily Paspalum notatum Flüggé) following restoration of the flood pulse validated the hypothesized deletion rule for initial transformation of the wet prairie zone. Predicted increased dominance of obligate and facultative wetland species, a “community addition rule”, also was confirmed. An index of weighted averages of wetland indicator taxa showed significant short-term responses to antecedent hydroperiods and depths, and a restoration trajectory for wetland plant species. As predicted, recruitment of wet prairie indicator species from the extant seed bank correlated with reestablishment of the flood pulse, but was greatest when inundation extended from the wet season into the dry season. Restoration of a wetland plant community did not result in the predicted increase in species richness and diversity. Colonization and expansion of the exotic grass, Hemarthria altissima (Poir.) Stapf & C.E. Hubb., disrupted community reassembly processes. By summer 2007, mean cover of this species and several other exotic grasses increased to 24%, and necessitated herbicide treatments. Assembly rules provided useful predictions for the initial restoration of wet prairie vegetation, but were eventually confounded by the spread of an exotic species that was new to the regional flora.
ISSN:0923-4861
1572-9834
DOI:10.1007/s11273-011-9241-3