Comparison of efficiency of terminal differentiation of oligodendrocytes from induced pluripotent stem cells versus embryonic stem cells in vitro

Oligodendrocytes are the myelinating cells of the central nervous system (CNS), and defects in these cells can result in the loss of CNS functions. Although oligodendrocyte progenitor cells transplantation therapy is an effective cure for such symptoms, there is no readily available source of these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bioscience and bioengineering 2010-06, Vol.109 (6), p.622-628
Hauptverfasser: Tokumoto, Yasuhito, Ogawa, Shinichiro, Nagamune, Teruyuki, Miyake, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oligodendrocytes are the myelinating cells of the central nervous system (CNS), and defects in these cells can result in the loss of CNS functions. Although oligodendrocyte progenitor cells transplantation therapy is an effective cure for such symptoms, there is no readily available source of these cells. Recent studies have described the generation of induced pluripotent stem cells (iPS cells) from somatic cells, leading to anticipation of this technique as a novel therapeutic tool in regenerative medicine. In this study, we evaluated the ability of iPS cells derived from mouse embryonic fibroblasts to differentiate into oligodendrocytes and compared this with the differential ability of mouse embryonic stem cells (ES cells). Experiments using an in vitro oligodendrocyte differentiation protocol that was optimized to ES cells demonstrated that 2.3% of iPS cells differentiated into O4 + oligodendrocytes compared with 24.0% of ES cells. However, the rate of induction of A2B5 + oligodendrocyte precursor cell (OPC) was similar for both iPS-derived cells and ES-derived cells (14.1% and 12.6%, respectively). These findings suggest that some intracellular factors in iPS cells inhibit the terminal differentiation of oligodendrocytes from the OPC stage.
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2009.11.013