Role of matrix metalloproteinase-3 in neurodegeneration
J. Neurochem. (2011) 116, 22-32. ABSTRACT: Matrix metalloproteinase-3 (MMP-3) is a member of the class of zinc-dependent proteases known to degrade the extracellular matrix. MMP-3 activity is regulated at three different levels: gene expression, proteolytic activation of the zymogen, and inhibition...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2011, Vol.116 (1), p.22-32 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | J. Neurochem. (2011) 116, 22-32. ABSTRACT: Matrix metalloproteinase-3 (MMP-3) is a member of the class of zinc-dependent proteases known to degrade the extracellular matrix. MMP-3 activity is regulated at three different levels: gene expression, proteolytic activation of the zymogen, and inhibition by the endogenous tissue inhibitors of metalloproteinase. A line of evidence indicates a role of MMP-3 in neurodegeneration. In neuronal cells, MMP-3 expression is increased in response to cell stress, and the cleaved, active MMP-3 participates in apoptotic signaling. In the extracellular space, MMP-3 triggers microglia to produce proinflammatory and cytotoxic molecules as well as MMP-3, which in turn contribute to neuronal damage. MMP-3 is increased in various experimental models of Parkinson's disease that are produced by selective toxins and by inflammagen, and the neuronal death is attenuated by various ways that inhibit MMP-3. α-Synuclein, whose gene mutations are associated with familial forms of Parkinson's disease, is proteolyzed by MMP-3. Contribution of MMP-3 toward the pathogenesis of Alzheimer's disease and other neurodegenerative diseases has also been suggested. Thus, modulation of MMP-3 expression and/or activity could be of therapeutic value for neurodegenerative diseases. |
---|---|
ISSN: | 0022-3042 1471-4159 |
DOI: | 10.1111/j.1471-4159.2010.07082.x |