Cortical integration of audio–visual speech and non-speech stimuli

Using fMRI we investigated the neural basis of audio–visual processing of speech and non-speech stimuli using physically similar auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses). Relative to uni-modal stimuli, the different multi-modal stimuli showed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain and cognition 2010-11, Vol.74 (2), p.97-106
Hauptverfasser: Wyk, Brent C. Vander, Ramsay, Gordon J., Hudac, Caitlin M., Jones, Warren, Lin, David, Klin, Ami, Lee, Su Mei, Pelphrey, Kevin A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using fMRI we investigated the neural basis of audio–visual processing of speech and non-speech stimuli using physically similar auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses). Relative to uni-modal stimuli, the different multi-modal stimuli showed increased activation in largely non-overlapping areas. Ellipse-Speech, which most resembles naturalistic audio–visual speech, showed higher activation in the right inferior frontal gyrus, fusiform gyri, left posterior superior temporal sulcus, and lateral occipital cortex. Circle-Tone, an arbitrary audio–visual pairing with no speech association, activated middle temporal gyri and lateral occipital cortex. Circle-Speech showed activation in lateral occipital cortex, and Ellipse-Tone did not show increased activation relative to uni-modal stimuli. Further analysis revealed that middle temporal regions, although identified as multi-modal only in the Circle-Tone condition, were more strongly active to Ellipse-Speech or Circle-Speech, but regions that were identified as multi-modal for Ellipse-Speech were always strongest for Ellipse-Speech. Our results suggest that combinations of auditory and visual stimuli may together be processed by different cortical networks, depending on the extent to which multi-modal speech or non-speech percepts are evoked.
ISSN:0278-2626
1090-2147
DOI:10.1016/j.bandc.2010.07.002