Exercise prior to fat ingestion lowers fasting and postprandial VLDL and decreases adipose tissue IL-6 and GIP receptor mRNA in hypertriacylglycerolemic men
Fasting and postprandial triacylglycerol (TAG) concentrations are risk factors for cardiovascular disease. This study evaluated whether interleukin-6 (IL-6) and incretin hormones [gastric inhibitory peptide (GIP) and glucagon-like peptide-1 (GLP-1) (active)] were associated with fasting and postpran...
Gespeichert in:
Veröffentlicht in: | The Journal of nutritional biochemistry 2010-10, Vol.21 (10), p.983-990 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fasting and postprandial triacylglycerol (TAG) concentrations are risk factors for cardiovascular disease. This study evaluated whether interleukin-6 (IL-6) and incretin hormones [gastric inhibitory peptide (GIP) and glucagon-like peptide-1 (GLP-1) (active)] were associated with fasting and postprandial TAG in response to an oral lipid load, including very-low-density lipoprotein (VLDL) and chylomicron (CM) TAG, following one bout of exercise in nine men (age, 59±2 years; body mass index, 34±2 kg/m
2; waist circumference, 113±3 cm) with high fasting TAG (2.9±0.2 mmol/L). Subjects completed two oral fat tolerance tests (OFTTs), randomized 1 week apart, that consisted of 1g fat/kg body weight emulsified lipids in the absence of carbohydrate and protein. Approximately 16 h prior to one OFTT, subjects completed 60 min of treadmill walking (estimated 55% VO
2 peak; heart rate, 122±4 beats/min). No exercise was performed on the day before the other OFTT. Fasted (0 h) and postprandial (1, 2, 3, 4, 5 and 6 h) blood samples were taken for analysis of TAG, IL-6 and incretins. Subcutaneous adipose tissue biopsies were taken at 0 and 6 h after OFTT ingestion for IL-6 and GIP receptor (GIPr) mRNA quantification. Exercise lowered fasting and postprandial TAG (
P.05). Exercise reduced IL-6 and GIPr mRNA (
P |
---|---|
ISSN: | 0955-2863 1873-4847 |
DOI: | 10.1016/j.jnutbio.2009.08.004 |