Local accumulations of B-50/GAP-43 evoke excessive bleb formation in PC12 cells

B-50 (GAP-43) is an axonal, plasma membrane-associated protein involved in growth cone morphology and function. We have conducted immunocytochemical, electron microscopic, and time-lapse experiments to visualize morphological consequences of local accumulations of B-50 at the plasma membrane of B-50...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 1999-08, Vol.20 (1), p.17-28
Hauptverfasser: Aarts, L H, Verkade, P, Schrama, L H, Oestreicher, A B, Gispen, W H, Schotman, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:B-50 (GAP-43) is an axonal, plasma membrane-associated protein involved in growth cone morphology and function. We have conducted immunocytochemical, electron microscopic, and time-lapse experiments to visualize morphological consequences of local accumulations of B-50 at the plasma membrane of B-50-transfected PC-B2 cells, a clonal PC12 cell line with very low expression of endogenous B-50. The distribution of the transfected B-50 within these cells was inhomogeneous. At sites where the B-50 concentration was locally increased up to twofold, numerous filopodia were present in growth cone-like, substrate-attached regions. When local B-50 concentrations were even higher (up to 6.2-fold), blebs were formed, often containing vesicular structures, heavily decorated with B-50 immunoreactivity. Double labeling with f-actin binding phalloidin revealed that local B-50 accumulations were accompanied by increased actin filament concentrations. Colocalization of B-50 with actin filaments was prominent in filopodia, but was virtually absent in blebs, suggesting a disconnection of the bleb plasma membrane from the actin cytoskeleton. We conclude that B-50 evokes distinct effects on cell-surface activity in PC12 cells depending on its local concentration.
ISSN:0893-7648
1559-1182
DOI:10.1007/BF02741362