Effect of the pretreatment of lipase with organic solvents on its conformation and activity in reverse micelles

The activity and conformation of Chromobacterium viscosum lipase-pretreated with various organic solvents were investigated. The pretreatment of lipase led to a substantial increase of enzyme activity in AOT (sodium bis [2-ethyl -1-hexyl] sulfosuccinate)/isooctane/water reverse micelles. Among the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2007-09, Vol.142 (3), p.253-262
Hauptverfasser: MONIRUZZAMAN, Muhammad, MAHABUBUR RAHMAN TALUKDER, HAYASHI, Yoshishige, KAWANISHI, Takuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The activity and conformation of Chromobacterium viscosum lipase-pretreated with various organic solvents were investigated. The pretreatment of lipase led to a substantial increase of enzyme activity in AOT (sodium bis [2-ethyl -1-hexyl] sulfosuccinate)/isooctane/water reverse micelles. Among the organic solvents used, n-hexane was found to be most effective. It was observed that higher hexane content with shorter agitation time and vice versa had almost the same effect on the initial activity of lipase. The kinetic study showed that the Michaelis constant (K m) and the substrate adsorption equilibrium constant (K ad) were reduced by the pretreatment of lipase with hexane, whereas the change in the maximum reaction rate (V max) was insignificant. The two spectroscopic techniques (Fluorescence spectra of lipase encapsulated in RMs and Fourier transform infrared [FTIR] spectra of lipase powders) were performed to detect possible conformational changes in the enzyme caused by the pretreatment. A correlation between the maximum fluorescence intensity and the activity of treated lipase was found as a function of agitation time. The FTIR spectrum of lipase showed a new shape peak corresponding to 1,500 cm-1 as a result of pretreatment with organic solvents.
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-007-0020-9