Evaluation of Exertion and Capture Stress in Serum of Wild Dugongs (Dugong dugon)

Seven hundred fifty-one dugongs (Dugong dugon) were pursued, captured, and handled for up to 20 min for population sampling. Fifty of these dugongs were then removed from the water for up to 55 min for comprehensive medical examination. Fifty whole blood and separated serum samples were analyzed for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of zoo and wildlife medicine 2012-03, Vol.43 (1), p.20-32
Hauptverfasser: Lanyon, Janet M, Sneath, Helen L, Long, Trevor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seven hundred fifty-one dugongs (Dugong dugon) were pursued, captured, and handled for up to 20 min for population sampling. Fifty of these dugongs were then removed from the water for up to 55 min for comprehensive medical examination. Fifty whole blood and separated serum samples were analyzed for potassium, sodium, chloride, creatinine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), urea, creatinine, glucose, anion gap, and total blood CO2. Serum biochemical variables of the dugong were compared with those obtained in previous studies of the related West Indian manatee, a mammal that does not appear to experience capture myopathy based on available data. Differences between these species included higher blood sodium and chloride in dugongs, which may reflect differences in salt balance and renal function, and higher blood lactate and CO2. Some biochemical analytes such as CK and AST, which may be indicative of rhabdomyolysis associated with capture stress myopathy (a potentially fatal condition for which dugongs have been thought to be highly susceptible) were high compared with levels previously measured in wild West Indian manatees (Trichechus latirostris). One of the 50 dugongs had marked elevations of CK and AST but showed no other clinical indications of rhabdomyolysis associated with capture myopathy such as hyperthermia. Rather, generally high levels of lactate, CK, and AST most probably reflect metabolic acidosis resulting from the exertion involved in the pursuit prior to capture. Earlier observations suggesting that dugongs were probably susceptible to capture stress myopathy (based on high serum potassium levels) were not supported by this study. Capture and handling methods currently used on dugongs in this research program do not appear to result in acute capture stress.
ISSN:1042-7260
1937-2825
DOI:10.1638/2010-0178.1