Efficient probabilistic forecasts for counts
Efficient probabilistic forecasts of integer-valued random variables are derived. The optimality is achieved by estimating the forecast distribution non-parametrically over a given broad model class and proving asymptotic (non-parametric) efficiency in that setting. The method is developed within th...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2011-03, Vol.73 (2), p.253-272 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efficient probabilistic forecasts of integer-valued random variables are derived. The optimality is achieved by estimating the forecast distribution non-parametrically over a given broad model class and proving asymptotic (non-parametric) efficiency in that setting. The method is developed within the context of the integer auto-regressive class of models, which is a suitable class for any count data that can be interpreted as a queue, stock, birth-and-death process or branching process. The theoretical proofs of asymptotic efficiency are supplemented by simulation results that demonstrate the overall superiority of the non-parametric estimator relative to a misspecified parametric alternative, in large but finite samples. The method is applied to counts of stock market iceberg orders. A subsampling method is used to assess sampling variation in the full estimated forecast distribution and a proof of its validity is given. |
---|---|
ISSN: | 1369-7412 1467-9868 |
DOI: | 10.1111/j.1467-9868.2010.00762.x |