Prostacyclin receptor-dependent inhibition of human erythroleukemia cell differentiation is STAT3-dependent
Abstract We have previously demonstrated that activation of prostacyclin (IP) receptors in human erythroleukemia (HEL) cells phosphorylates the signal transducer and activator of transcription 3 (STAT3) via Gαs and Gα16 hybrid signalling. This current study was designed to determine if functional re...
Gespeichert in:
Veröffentlicht in: | Prostaglandins, leukotrienes and essential fatty acids leukotrienes and essential fatty acids, 2012-03, Vol.86 (3), p.119-126 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract We have previously demonstrated that activation of prostacyclin (IP) receptors in human erythroleukemia (HEL) cells phosphorylates the signal transducer and activator of transcription 3 (STAT3) via Gαs and Gα16 hybrid signalling. This current study was designed to determine if functional responses to cicaprost in HEL cells were dependent on STAT3 phosphorylation. Cicaprost significantly enhanced the rapid change in HEL cell morphology induced by phorbol-12-myristate-13-acetate (PMA), and this effect was inhibited by the IP receptor antagonist RO1138452 and a STAT3 inhibitory peptide. Other indicators of PMA-induced HEL cell differentiation, such as increased expression of CD41/CD61 and an increase in cell complexity/granularity, were inhibited by cicaprost in an IP receptor-dependent and STAT3-dependent manner. Although thrombopoietic cytokines promote megakaryocytic differentiation and platelet production via activation of STAT3, the predominant STAT3-dependent effects of cicaprost in HEL cells were inhibitory towards the process of PMA-induced megakaryocytopoeisis. |
---|---|
ISSN: | 0952-3278 1532-2823 |
DOI: | 10.1016/j.plefa.2011.12.002 |