A teleostean angiotensinogen from Oplegnathus fasciatus responses to immune and injury challenges
Angiotensinogen (AGT) is the precursor of the renin-angiotensin system and contributes to osmoregulation, acute-phase and immune responses. A full-length cDNA of the AGT (2004 bp with a 1389 bp coding region) was isolated from rock bream (Rb), Oplegnathus fasciatus. The encoded polypeptide of 463 am...
Gespeichert in:
Veröffentlicht in: | Fish & shellfish immunology 2012-05, Vol.32 (5), p.922-928 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Angiotensinogen (AGT) is the precursor of the renin-angiotensin system and contributes to osmoregulation, acute-phase and immune responses. A full-length cDNA of the AGT (2004 bp with a 1389 bp coding region) was isolated from rock bream (Rb), Oplegnathus fasciatus. The encoded polypeptide of 463 amino acids had a predicted molecular mass of 51.6 kDa. RbAGT possessed a deduced signal peptide of 22 residues upstream of a putative angiotensin I sequence (23NRVYVHPFHL32). RbAGT possessed a specific domain profile and a signature motif which are characteristics of the serpin family. Sequence homology and phylogenetic analysis indicated that RbAGT was evolutionarily closest to AGT of Rhabdosargus sarba. The mRNA expression profile of RbAGT was determined by quantitative RT-PCR and it demonstrated a constitutive and tissue-specific expression with the highest transcript level in the liver. Significantly up-regulated RbAGT expression was elicited by systemic injection of a lipopolysaccharide, rock bream iridovirus (RBIV) and bacteria (Edwardsiella tarda and Streptococcus iniae), revealing its pathogen inducibility. RbAGT manifested a down-regulated response to systemic injury, contemporaneously with two other serpins, protease nexin-1 (PN-1), and heparin cofactor II (HCII). In addition, a synchronized expression pattern was elicited by RbAGT and RbTNF-α in response to injury, suggesting that TNF-α might be a potential modulator of AGT transcription.
[Display omitted]
► Molecular characterization of angiotensinogen from rock bream (RbAGT). ► Tissue-specific transcriptional profile of RbAGT. ► Response of hepatic RbAGT against LPS, bacteria and iridovirus. ► Temporal expression of hematic RbAGT upon injury. ► Expressional relationship between RbAGT, HCII, PN-1 and TNF-α. |
---|---|
ISSN: | 1050-4648 1095-9947 |
DOI: | 10.1016/j.fsi.2012.01.019 |