Lessons from human coronary aspirate

Abstract The interventional implantation of a stent into an atherosclerotic coronary artery is a unique and paradigmatic scenario of plaque rupture in humans. The use of protection devices not only prevents the released plaque particles and the superimposed thrombotic material from being washed and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular and cellular cardiology 2012-04, Vol.52 (4), p.890-896
Hauptverfasser: Kleinbongard, Petra, Konorza, Thomas, Böse, Dirk, Baars, Theodor, Haude, Michael, Erbel, Raimund, Heusch, Gerd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The interventional implantation of a stent into an atherosclerotic coronary artery is a unique and paradigmatic scenario of plaque rupture in humans. The use of protection devices not only prevents the released plaque particles and the superimposed thrombotic material from being washed and embolized into the coronary microcirculation of the individual patient, but permits also the retrieval and ex vivo analysis of particulate plaque debris and soluble substances. The particulate debris comprises typical cholesterol crystals, foam cells, hyalin material and calcium deposits from the atheroma as well as platelets and coagulation material; soluble substances include vasoconstrictors, such as serotonin and thromboxane, as well as inflammatory mediators, such as TNFα which amplifies vasoconstriction by inducing endothelial dysfunction. The vasoconstriction observed in a bioassay ex vivo correlates to clinical symptoms, angiographic stenosis and plaque burden, as assessed by intravascular ultrasound. The release of TNFα into the aspirate correlates to restenosis. Detailed analysis of the human coronary aspirate may promote a better understanding of the pathophysiology of the vulnerable atherosclerotic plaque and help to better antagonize the microvascular consequences of coronary microembolization, including the no reflow phenomenon. This article is part of a Special Issue entitled “Coronary Blood Flow.”
ISSN:0022-2828
1095-8584
DOI:10.1016/j.yjmcc.2011.06.022