Slow dynamics and precursors of the glass transition in granular fluids

We use event driven simulations to analyze glassy dynamics as a function of density and energy dissipation in a two-dimensional bidisperse granular fluid under stationary conditions. Clear signatures of a glass transition are identified, such as an increase of relaxation times over several orders of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-09, Vol.84 (3 Pt 1), p.031305-031305, Article 031305
Hauptverfasser: Gholami, Iraj, Fiege, Andrea, Zippelius, Annette
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use event driven simulations to analyze glassy dynamics as a function of density and energy dissipation in a two-dimensional bidisperse granular fluid under stationary conditions. Clear signatures of a glass transition are identified, such as an increase of relaxation times over several orders of magnitude. As the inelasticity is increased, the glass transition is shifted to higher densities, and the precursors of the transition become less and less pronounced, in agreement with a recent mode-coupling theory. We analyze the long-time tails of the velocity autocorrelation and discuss its consequences for the nonexistence of the diffusion constant in two dimensions.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.84.031305