Efficient and principled method for detecting communities in networks

A fundamental problem in the analysis of network data is the detection of network communities, groups of densely interconnected nodes, which may be overlapping or disjoint. Here we describe a method for finding overlapping communities based on a principled statistical approach using generative netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-09, Vol.84 (3 Pt 2), p.036103-036103, Article 036103
Hauptverfasser: Ball, Brian, Karrer, Brian, Newman, M E J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fundamental problem in the analysis of network data is the detection of network communities, groups of densely interconnected nodes, which may be overlapping or disjoint. Here we describe a method for finding overlapping communities based on a principled statistical approach using generative network models. We show how the method can be implemented using a fast, closed-form expectation-maximization algorithm that allows us to analyze networks of millions of nodes in reasonable running times. We test the method both on real-world networks and on synthetic benchmarks and find that it gives results competitive with previous methods. We also show that the same approach can be used to extract nonoverlapping community divisions via a relaxation method, and demonstrate that the algorithm is competitively fast and accurate for the nonoverlapping problem.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.84.036103