Continuity of the explosive percolation transition

The explosive percolation problem on the complete graph is investigated via extensive numerical simulations. We obtain the cluster-size distribution at the moment when the cluster size heterogeneity becomes maximum. The distribution is found to be well described by the power-law form with the decay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-08, Vol.84 (2 Pt 1), p.020101-020101, Article 020101
Hauptverfasser: Lee, Hyun Keun, Kim, Beom Jun, Park, Hyunggyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The explosive percolation problem on the complete graph is investigated via extensive numerical simulations. We obtain the cluster-size distribution at the moment when the cluster size heterogeneity becomes maximum. The distribution is found to be well described by the power-law form with the decay exponent τ=2.06(2), followed by a hump. We then use the finite-size scaling method to make all the distributions at various system sizes up to N=2(37) collapse perfectly onto a scaling curve characterized solely by the single exponent τ. We also observe that the instant of that collapse converges to a well-defined percolation threshold from below as N→∞. Based on these observations, we show that the explosive percolation transition in the model should be continuous, contrary to the widely spread belief of its discontinuity.
ISSN:1539-3755
1550-2376
DOI:10.1103/physreve.84.020101