Highly sensitive polymerase chain reaction-free quantum dot-based quantification of forensic genomic DNA
[Display omitted] ► Genomic DNA quantification were performed using a quantum dot-labeled Alu sequence. ► This probe provided PCR-free determination of human genomic DNA. ► Qdot-labeled Alu probe-hybridized genomic DNAs had a 2.5-femtogram detection limit. ► Qdot-labeled Alu sequence was used to ass...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2012-04, Vol.721, p.85-91 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
► Genomic DNA quantification were performed using a quantum dot-labeled Alu sequence. ► This probe provided PCR-free determination of human genomic DNA. ► Qdot-labeled Alu probe-hybridized genomic DNAs had a 2.5-femtogram detection limit. ► Qdot-labeled Alu sequence was used to assess DNA samples for human identification.
Forensic DNA samples can degrade easily due to exposure to light and moisture at the crime scene. In addition, the amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. The accurately quantified extracted genomic DNA is then used as a DNA template in polymerase chain reaction (PCR) amplification for short tandem repeat (STR) human identification. Accordingly, highly sensitive and human-specific quantification of forensic DNA samples is an essential issue in forensic study. In this work, a quantum dot (Qdot)-labeled Alu sequence was developed as a probe to simultaneously satisfy both the high sensitivity and human genome selectivity for quantification of forensic DNA samples. This probe provided PCR-free determination of human genomic DNA and had a 2.5-femtogram detection limit due to the strong emission and photostability of the Qdot. The Qdot-labeled Alu sequence has been used successfully to assess 18 different forensic DNA samples for STR human identification. |
---|---|
ISSN: | 0003-2670 1873-4324 |
DOI: | 10.1016/j.aca.2012.01.056 |