Designing Responsive Buckled Surfaces by Halftone Gel Lithography
Self-actuating materials capable of transforming between three-dimensional shapes have applications in areas as diverse as biomedicine, robotics, and tunable micro-optics. We introduce a method of photopatterning polymer films that yields temperature-responsive gel sheets that can transform between...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2012-03, Vol.335 (6073), p.1201-1205 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-actuating materials capable of transforming between three-dimensional shapes have applications in areas as diverse as biomedicine, robotics, and tunable micro-optics. We introduce a method of photopatterning polymer films that yields temperature-responsive gel sheets that can transform between a flat state and a prescribed three-dimensional shape. Our approach is based on polyi/V-isopropylacrylamide) copolymers containing pendent benzophenone units that allow cross-linking to be tuned by irradiation dose. We describe a simple method of halftone gel lithography using only two photomasks, wherein highly cross-linked dots embedded in a lightly cross-linked matrix provide access to nearly continuous, and fully two-dimensional, patterns of swelling. This method is used to fabricate surfaces with constant Gaussian curvature (spherical caps, saddles, and cones) or zero mean curvature (Enneper's surfaces), as well as more complex and nearly closed shapes. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1215309 |