Tunable resistivity of individual magnetic domain walls

Despite the relevance of current-induced magnetic domain wall (DW) motion for new spintronics applications, the exact details of the current-domain wall interaction are not yet understood. A property intimately related to this interaction is the intrinsic DW resistivity. Here, we investigate experim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2012-01, Vol.108 (3), p.037205-037205, Article 037205
Hauptverfasser: Franken, J H, Hoeijmakers, M, Swagten, H J M, Koopmans, B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the relevance of current-induced magnetic domain wall (DW) motion for new spintronics applications, the exact details of the current-domain wall interaction are not yet understood. A property intimately related to this interaction is the intrinsic DW resistivity. Here, we investigate experimentally how the resistivity inside a DW depends on the wall width Δ, which is tuned using focused ion beam irradiation of Pt/Co/Pt strips. We observe the nucleation of individual DWs with Kerr microscopy, and measure resistance changes in real time. A 1/Δ(2) dependence of DW resistivity is found, compatible with Levy-Zhang theory. Also quantitative agreement with theory is found by taking full account of the current flowing through each individual layer inside the multilayer stack.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.108.037205