Stiffness, not inertial coupling, determines path curvature of wrist motions

When humans rotate their wrist in flexion-extension, radial-ulnar deviation, and combinations, the resulting paths (like the path of a laser pointer on a screen) exhibit a distinctive pattern of curvature. In this report we show that the passive stiffness of the wrist is sufficient to account for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2012-02, Vol.107 (4), p.1230-1240
Hauptverfasser: Charles, Steven K, Hogan, Neville
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When humans rotate their wrist in flexion-extension, radial-ulnar deviation, and combinations, the resulting paths (like the path of a laser pointer on a screen) exhibit a distinctive pattern of curvature. In this report we show that the passive stiffness of the wrist is sufficient to account for this pattern. Simulating the dynamics of wrist rotations using a demonstrably realistic model under a variety of conditions, we show that wrist stiffness can explain all characteristics of the observed pattern of curvature. We also provide evidence against other possible causes. We further demonstrate that the phenomenon is robust against variations in human wrist parameters (inertia, damping, and stiffness) and choice of model inputs. Our findings explain two previously observed phenomena: why faster wrist rotations exhibit more curvature and why path curvature rotates with pronation-supination of the forearm. Our results imply that, as in reaching, path straightness is a goal in the planning and control of wrist rotations. This requires humans to predict and compensate for wrist dynamics, but, unlike reaching, nonlinear inertial coupling (e.g., Coriolis acceleration) is insignificant. The dominant term to be compensated is wrist stiffness.
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.00428.2011