Plant phylogeny as a surrogate for turnover in beetle assemblages

The ability to extrapolate from the known to the unknown is essential if we are to use the turnover of overall biodiversity, as opposed to a few well-known groups, to inform conservation planning. We investigated the usefulness of using evolutionary relationships of plants as a surrogate for the tur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biodiversity and conservation 2012-02, Vol.21 (2), p.323-342
Hauptverfasser: Nipperess, David A., Beattie, Andrew J., Faith, Daniel P., Ginn, Scott G., Kitching, Roger L., Reid, Chris A. M., Russell, Tracey, Hughes, Lesley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to extrapolate from the known to the unknown is essential if we are to use the turnover of overall biodiversity, as opposed to a few well-known groups, to inform conservation planning. We investigated the usefulness of using evolutionary relationships of plants as a surrogate for the turnover of their associated beetle assemblages. If plant traits that are important to insects are phylogenetically conserved, it follows that there will be a positive relationship between insect faunal dissimilarity and plant evolutionary distance. We collected beetles using pyrethrum knock-down methods from 40 plant species belonging to four plant families in the Sydney region of Eastern Australia. We developed a novel approach for estimating variance in the dissimilarity of beetle assemblages, as explained by plant phylogeny, by using phylogenetic eigenvectors as explanatory variables in a distance-based redundancy analysis. We found a highly significant relationship between faunal dissimilarity and plant evolutionary distance for the entire beetle assemblage, the herbivorous component, and the non-herbivorous component, indicating that beetles generally showed some preference for particular plant clades as habitat, regardless of feeding guild. When comparing observed dissimilarities with those predicted from 40 jack-knife replicates of a Generalised Dissimilarity Model, we were often able to predict beetle turnover from plant phylogenetic relationships, although the reliability of this result was highly variable. Nevertheless, the broad response of beetle assemblages to plant evolutionary relatedness indicates real potential for plant phylogenetic pattern to act as a useful surrogate for insect biodiversity, especially when supplemented with other environmental correlates.
ISSN:0960-3115
1572-9710
DOI:10.1007/s10531-011-0185-y