Engineering Saccharomyces cerevisiae to produce feruloyl esterase for the release of ferulic acid from switchgrass

The Aspergillus niger feruloyl esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium with a yield of ~2 mg/l. The recombinant enzyme was purified to homogeneity by anion-exchange and hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial microbiology & biotechnology 2011-12, Vol.38 (12), p.1961-1967
Hauptverfasser: Wong, Dominic W. S, Chan, Victor J, Batt, Sarah B, Sarath, Gautam, Liao, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Aspergillus niger feruloyl esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium with a yield of ~2 mg/l. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interaction chromatography. The specific activity was determined to be 8,200 U/μg (pH 6.5, 20°C, 3.5 mM 4-nitrophenyl ferulate). The protein had a correct N-terminal sequence of ASTQGISEDLY, indicating that the signal peptide was properly processed. The FAE exhibited an optimum pH of 6–7 and operated optimally at 50°C using ground switchgrass as the substrate. The yeast clone was demonstrated to catalyze the release of ferulic acid continuously from switchgrass in YNB medium at 30°C. This work represents the first report on engineering yeast for the breakdown of ferulic acid crosslink to facilitate consolidated bioprocessing.
ISSN:1367-5435
1476-5535
DOI:10.1007/s10295-011-0985-9