On Sitnikov-like motions generating new kinds of 3D periodic orbits in the R3BP with prolate primaries

The existence of new equilibrium points is established in the restricted three-body problem with equal prolate primaries. These are located on the Z -axis above and below the inner Eulerian equilibrium point L 1 and give rise to a new type of straight-line periodic oscillations, different from the w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysics and space science 2012, Vol.337 (1), p.99-106
Hauptverfasser: Douskos, C., Kalantonis, V., Markellos, P., Perdios, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The existence of new equilibrium points is established in the restricted three-body problem with equal prolate primaries. These are located on the Z -axis above and below the inner Eulerian equilibrium point L 1 and give rise to a new type of straight-line periodic oscillations, different from the well known Sitnikov motions. Using the stability properties of these oscillations, bifurcation points are found at which new types of families of 3D periodic orbits branch out of the Z -axis consisting of orbits located entirely above or below the orbital plane of the primaries. Several of the bifurcating families are continued numerically and typical member orbits are illustrated.
ISSN:0004-640X
1572-946X
DOI:10.1007/s10509-011-0807-6