Precalibrating an intermediate complexity climate model

Credible climate predictions require a rational quantification of uncertainty, but full Bayesian calibration requires detailed estimates of prior probability distributions and covariances, which are difficult to obtain in practice. We describe a simplified procedure, termed precalibration, which pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2011-10, Vol.37 (7-8), p.1469-1482
Hauptverfasser: Edwards, Neil R., Cameron, David, Rougier, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Credible climate predictions require a rational quantification of uncertainty, but full Bayesian calibration requires detailed estimates of prior probability distributions and covariances, which are difficult to obtain in practice. We describe a simplified procedure, termed precalibration, which provides an approximate quantification of uncertainty in climate prediction, and requires only that uncontroversially implausible values of certain inputs and outputs are identified. The method is applied to intermediate-complexity model simulations of the Atlantic meridional overturning circulation (AMOC) and confirms the existence of a cliff-edge catastrophe in freshwater-forcing input space. When uncertainty in 14 further parameters is taken into account, an implausible, AMOC-off, region remains as a robust feature of the model dynamics, but its location is found to depend strongly on values of the other parameters.
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-010-0921-0