Cardiac Tissue Injury Resistance During Myocardial Infarction at Adulthood by Developmental Exposure to Cadmium

It has been suggested that prenatal exposure to cadmium may alter the cardiovascular function during adulthood. Using the left coronary artery ligation model of acute myocardial infarction, we studied the cardiac function of female adult offspring rats exposed to cadmium (30 ppm) during gestation. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular toxicology 2012-03, Vol.12 (1), p.64-72
Hauptverfasser: Zepeda, Ramiro, Castillo, Paula, Sáez, Daniel, Llanos, Miguel N., Ronco, Ana M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been suggested that prenatal exposure to cadmium may alter the cardiovascular function during adulthood. Using the left coronary artery ligation model of acute myocardial infarction, we studied the cardiac function of female adult offspring rats exposed to cadmium (30 ppm) during gestation. The cardiac ischemic zone in the control and cadmium-exposed groups was measured 72 h post-ligation using the TPT staining technique. Offspring from cadmium-treated dams showed a significantly smaller infarcted area compared with the control group (7.1 ± 1.5 vs. 19.6 ± 2.8%, P  ≤ 0.05). We also performed echocardiographic and biochemical studies, which positively correlated with the differences observed previously. To evaluate whether the effects were associated to pre-infarct tissue damage and/or angiogenic molecules, we performed histological studies and measured the expression of vascular endothelial growth factor (VEGF), and platelet endothelial cellular adhesion molecule-1 (PECAM-1). Results revealed a higher heart vascularization in the exposed offspring that was associated with an increase in PECAM and a decrease in VEGF expression. We conclude that prenatal exposure to cadmium induces fetal adaptive responses involving changes in the expression of some cardiac angiogenic molecules resulting in long-term resistance to infarction.
ISSN:1530-7905
1559-0259
DOI:10.1007/s12012-011-9139-6