Toxicological Insight from AP-1 Silencing Study on Proliferation, Migration, and Dedifferentiation of Rat Vascular Smooth Muscle Cell
There has an effective way to prevent intimal hyperplasia on vascular smooth muscle cell (VSMC) proliferation in grafted veins. The activator protein-1 (AP-1) transcription factor plays an important role in cardiovascular generation and angioplasty. Once activated, AP-1 binds its specific DNA sequen...
Gespeichert in:
Veröffentlicht in: | Cardiovascular toxicology 2012-03, Vol.12 (1), p.25-38 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There has an effective way to prevent intimal hyperplasia on vascular smooth muscle cell (VSMC) proliferation in grafted veins. The activator protein-1 (AP-1) transcription factor plays an important role in cardiovascular generation and angioplasty. Once activated, AP-1 binds its specific DNA sequence to promote the proliferation of VSMC, differentiation, and migration. The objectives of this study were to determine toxicological effects of AP-1 silencing study on proliferation, migration, and dedifferentiation of rat vascular smooth muscle cell. To suppress the expression of AP-1 gene, AP-1 siRNA was used to interfere post-transcription in rat primary VSMCs. To observe the expression of SM α-actin and downstream genes of AP-1, the activity of cell matrix metal proteinases and the migration ability of VSMC was examined by a modified Boyden chamber assay. Effects of AP-1 siRNA on proliferation and differentiation in rat VSMCs were evaluated by cell cycle analysis, DNA synthesis, MTT-test, and immunofluorescence. The results showed that the level of SM α-actin protein expression was increased. AP-1 siRNA also significantly decreased the MTT extinction value, DNA synthesis, PCNA expression, and the cell migration velocity when compared to the control group. AP-1 siRNA also clearly arrested cell cycle of VSM at the G0/G1 phase. Zymographic and Western blotting analyses showed that AP-1 siRNA suppressed serum-induced MMP-2 expression. These data suggest that the AP-1 siRNA was able to effectively inhibit the proliferation, migration, and dedifferentiation of smooth muscle cells. Thus, AP-1 siRNA provides a novel method to prevent intimal hyperplasia in blood vessel angioplasty. |
---|---|
ISSN: | 1530-7905 1559-0259 |
DOI: | 10.1007/s12012-011-9135-x |