On the Relation Between the Linear Factor Model and the Latent Profile Model

The relationship between linear factor models and latent profile models is addressed within the context of maximum likelihood estimation based on the joint distribution of the manifest variables. Although the two models are well known to imply equivalent covariance decompositions, in general they do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika 2011-10, Vol.76 (4), p.564-583
Hauptverfasser: Halpin, Peter F., Dolan, Conor V., Grasman, Raoul P. P. P., De Boeck, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relationship between linear factor models and latent profile models is addressed within the context of maximum likelihood estimation based on the joint distribution of the manifest variables. Although the two models are well known to imply equivalent covariance decompositions, in general they do not yield equivalent estimates of the unconditional covariances. In particular, a 2-class latent profile model with Gaussian components underestimates the observed covariances but not the variances, when the data are consistent with a unidimensional Gaussian factor model. In explanation of this phenomenon we provide some results relating the unconditional covariances to the goodness of fit of the latent profile model, and to its excess multivariate kurtosis. The analysis also leads to some useful parameter restrictions related to symmetry.
ISSN:0033-3123
1860-0980
DOI:10.1007/s11336-011-9230-8