A hydro-environmental watershed model improved in canal-aquifer water exchange process
Long-term simulation using the distributed hydro-environmental watershed model is efficacious for assessing irrigation impacts on hydrological cycle in detail and for implementing watershed management successfully. In this article, the previously developed hydro-environmental watershed model (HEWM-1...
Gespeichert in:
Veröffentlicht in: | Paddy and water environment 2011-12, Vol.9 (4), p.425-439 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Long-term simulation using the distributed hydro-environmental watershed model is efficacious for assessing irrigation impacts on hydrological cycle in detail and for implementing watershed management successfully. In this article, the previously developed hydro-environmental watershed model (HEWM-1) is improved in the water exchange process caused by surface water-groundwater interaction via drainage canals and/or underdrains. The time-varying stream flow in canals is described by the complete one-dimensional shallow water equations in a newly introduced submodel, the open channel flow submodel. This submodel coordinates with the other submodels: the tank, soil moisture and groundwater flow submodels which are interlinked in a cascade manner. The improved model (HEWM-2) is applied to an agricultural watershed covering an area from an alluvial fan onto a nearly level alluvial plain, to be validated. The simulation by HEWM-2 is informative for identifying whether any drainage canal is gaining or losing water in relation to groundwater level. It could thus provide useful information for conserving a complex network of drainage canals which also functions as a passage for aquatic animals like fishes. |
---|---|
ISSN: | 1611-2490 1611-2504 |
DOI: | 10.1007/s10333-011-0290-2 |