A corrected 3-D SPH method for breaking tsunami wave modelling
A 3-D large eddy simulation model that was first transformed to smoothed particle hydrodynamics (LES-SPH)-based model was employed to study breaking tsunami waves in this paper. LES-SPH is a gridless (or mesh-free), purely Lagrangian particle approach which is capable of tracking the free surface of...
Gespeichert in:
Veröffentlicht in: | Natural hazards (Dordrecht) 2012, Vol.60 (1), p.81-100 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A 3-D large eddy simulation model that was first transformed to smoothed particle hydrodynamics (LES-SPH)-based model was employed to study breaking tsunami waves in this paper. LES-SPH is a gridless (or mesh-free), purely Lagrangian particle approach which is capable of tracking the free surface of violent deformation with fragmentation in an easy and accurate way. The Smagorinsky closure model is used to simulate the turbulence due to its simplicity and effectiveness. The Sub-Particle Scale scheme, plus the link-list algorithm, is applied to reduce the demand of computational power. The computational results show that the 3-D LES-SPH model can capture well the breaking wave characteristics. Spatial evolution features of breaking wave are presented and visualized. The detailed mechanisms of turbulence transport and vorticity dynamics are demonstrated as well. This application also presents an example to validate the SPH model. |
---|---|
ISSN: | 0921-030X 1573-0840 |
DOI: | 10.1007/s11069-011-9954-x |