Metabolic Flux Analysis and Principal Nodes Identification for Daptomycin Production Improvement by Streptomyces roseosporus
In the present work, a comprehensive metabolic network of Streptomyces roseosporus LC-54-20 was proposed for daptomycin production. The analysis of extracellular metabolites throughout the batch fermentation was evaluated in addition to daptomycin and biomass production. Metabolic flux distributions...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2011-12, Vol.165 (7-8), p.1725-1739 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present work, a comprehensive metabolic network of
Streptomyces roseosporus
LC-54-20 was proposed for daptomycin production. The analysis of extracellular metabolites throughout the batch fermentation was evaluated in addition to daptomycin and biomass production. Metabolic flux distributions were based on stoichiometrical reaction as well as the extracellular metabolites fluxes. Experimental and calculated values for both the specific growth rate and daptomycin production rate indicated that the in silico model proved a powerful tool to analyze the metabolic behaviors based on the analysis under different initial glucose concentrations throughout the fermentation. Through manipulating different pH values, the production rates of various extracellular metabolites were also presented in this paper. Flux distribution variations revealed that the daptomycin production could be significantly influenced by the branch points of glucose 6-phosphate, 3-phosphoglycerate, phosphoenolpyruvate, pyruvate, and oxaloacetate. The five principal metabolites were certified as the flexible nodes and could form potential bottlenecks for a further enhancement of daptomycin production. Furthermore, various concentrations of the five precursors were added into the batch fermentation and led to the enhancement of daptomycin concentration and production rate. |
---|---|
ISSN: | 0273-2289 1559-0291 |
DOI: | 10.1007/s12010-011-9390-0 |