A fluorinated analog of ISO-1 blocks the recognition and biological function of MIF and is orally efficacious in a murine model of colitis

A promising therapeutic approach to diminish pathological inflammation is to inhibit the synthesis and/or biological activity of macrophage migration inhibitory factor (MIF). Prior studies have shown that intraperitoneal administration of small-molecule inhibitors targeting the catalytic pocket of M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2009-04, Vol.607 (1), p.201-212
Hauptverfasser: Dagia, Nilesh M., Kamath, Divya V., Bhatt, Pooja, Gupte, Ravindra D., Dadarkar, Shruta S., Fonseca, Lyle, Agarwal, Gautam, Chetrapal-Kunwar, Anshu, Balachandran, Sarala, Srinivasan, Shaila, Bose, Julie, Pari, Koteppa, B-Rao, Chandrika, Parkale, Santosh S., Gadekar, Pradip K., Rodge, Atish H., Mandrekar, Noopur, Vishwakarma, Ram A., Sharma, Somesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A promising therapeutic approach to diminish pathological inflammation is to inhibit the synthesis and/or biological activity of macrophage migration inhibitory factor (MIF). Prior studies have shown that intraperitoneal administration of small-molecule inhibitors targeting the catalytic pocket of MIF (e.g., ISO-1) elicits a therapeutic effect in mouse inflammation models. However, it remains to be elucidated whether these tautomerase activity inhibitors block the synthesis and/or biological activity of MIF. In this study, we investigated and compared the activity of representative MIF inhibitors from isoxazole series (fluorinated analog of ISO-1; ISO-F) and substituted quinoline series (compound 7E; 7E). Our results demonstrate that ISO-F is a more potent MIF inhibitor than 7E. Both ISO-F and 7E do not inhibit MIF synthesis but “bind-onto” MIF thereby blocking its recognition. However, in contrast to 7E, ISO-F docks well in the active site of MIF and also has a stronger binding affinity towards MIF. In line with these observations, ISO-F, but not 7E, robustly inhibits the biological function of MIF. Most importantly, ISO-F, when administered orally in a therapeutic regimen, significantly suppresses dextran sulphate sodium (DSS)-induced murine colitis. This study, which provides mechanistic insights into the anti-inflammatory efficacy of ISO-F, is the first documented report of in vivo anti-inflammatory efficacy of a MIF inhibitor upon oral administration. Moreover, the findings from this study reinforce the potential of catalytic site of MIF as a target for eliciting therapeutic effect in inflammatory disorders. Compounds (e.g., ISO-F) that block not only the recognition but also the biological function of MIF are potentially attractive for reducing pathological inflammation.
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2009.02.031