Do microRNAs regulate bone marrow stem cell niche physiology?

The adult bone marrow, situated within the bone cavity, comprises three distinct stem cell populations: hematopoietic stem cells (HSCs), mesenchymal stromal/stem cells (MSCs) and endothelial progenitor/stem cells (EPCs). HSCs are a well-characterized population of self-renewing cells that give rise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene 2012-04, Vol.497 (1), p.1-9
Hauptverfasser: Laine, S.K., Hentunen, T., Laitala-Leinonen, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adult bone marrow, situated within the bone cavity, comprises three distinct stem cell populations: hematopoietic stem cells (HSCs), mesenchymal stromal/stem cells (MSCs) and endothelial progenitor/stem cells (EPCs). HSCs are a well-characterized population of self-renewing cells that give rise to all blood cells. The definition of MSCs is more complex due to the limited understanding of MSC properties. In general, MSCs are considered multipotent stromal cells that are able to differentiate into various cell types, including osteoblasts, chondrocytes and adipocytes. Compared to HSCs and MSCs, EPCs are a newly discovered population of stem/progenitor cells with the capacity to differentiate into endothelial cells, the cells forming the inner lining of a blood vessel. Although functionally different, HSCs, MSCs and EPCs, like stem cells in general, share the ability to self-renew and differentiate into one or more cell types. The homeostasis inside the bone marrow and within the entire body is sustained by an intricate network of growth factors and transcription factors that orchestrate the proliferation and differentiation of these multipotent stem/progenitor cells. Increasing evidence indicates that microRNAs (miRNAs), small non-coding RNAs, are among the key players of this concert. This review summarizes the current insights into miRNA-mediated regulation of bone marrow stem/progenitor cell maintenance and differentiation. Furthermore, the potential contribution of miRNAs in bone marrow stem cell niches is discussed. ► MicroRNAs regulate the self-renewal and differentiation of bone marrow stem cells. ► Bone marrow stem cells reside in stem cell niches. ► MicroRNAs may be involved in the regulation of niche function.
ISSN:0378-1119
1879-0038
DOI:10.1016/j.gene.2012.01.045