From Mouse to Man: Predictions of Human Pharmacokinetics of Orally Administered Docetaxel From Preclinical Studies

Intravenously administered docetaxel is approved for the treatment of various types of cancer. An oral regimen, in combination with ritonavir, is being evaluated in clinical trials. The pharmacokinetics of docetaxel are determined by the activity of the metabolizing enzyme cytochrome P450 3A (CYP3A)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical pharmacology 2012-03, Vol.52 (3), p.370-380
Hauptverfasser: Koolen, S. L. W., van Waterschoot, R. A. B., van Tellingen, O., Schinkel, A. H., Beijnen, J. H., Schellens, J. H. M., Huitema, A. D. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intravenously administered docetaxel is approved for the treatment of various types of cancer. An oral regimen, in combination with ritonavir, is being evaluated in clinical trials. The pharmacokinetics of docetaxel are determined by the activity of the metabolizing enzyme cytochrome P450 3A (CYP3A) and the drug efflux transporter P-glycoprotein (P-gp). The effects of these proteins on the pharmacokinetics of docetaxel were investigated in different mouse models that lack 1 or both detoxifying systems. Docetaxel was given to these mice orally or intravenously with or without a strong CYP3A inhibitor, ritonavir. The data of these 2 preclinical studies were pooled and analyzed using nonlinear mixed-effects modeling. The results of the preclinical studies could be integrated successfully, with only a small difference in residual error (33% and 26%, respectively). Subsequently, the model was used to predict human exposure using allometric scaling and this was compared with clinical trial data. This model led to adequate predictions of docetaxel exposure in humans.
ISSN:0091-2700
1552-4604
DOI:10.1177/0091270010397051