An improved hydrodynamic model describing heat generation and transport in submicron silicon devices

An hydrodynamic model for electron and phonon transport in silicon semiconductors has been formulated, on the basis of the Maximum Entropy Principle, in order to describe off-equilibrium phenomena in submicron silicon devices.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2008-09, Vol.7 (3), p.142-145
Hauptverfasser: Muscato, O., Di Stefano, V., Milazzo, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue 3
container_start_page 142
container_title Journal of computational electronics
container_volume 7
creator Muscato, O.
Di Stefano, V.
Milazzo, C.
description An hydrodynamic model for electron and phonon transport in silicon semiconductors has been formulated, on the basis of the Maximum Entropy Principle, in order to describe off-equilibrium phenomena in submicron silicon devices.
doi_str_mv 10.1007/s10825-008-0252-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926335152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918272710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-5e72d40d467b4c53617b0120da5de9d1a1e5b4d86aae7356e22f2935b03fe5c03</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhk1poGmSH9CboJSenI5GlmUfQ2jaQiCX5ixkabxRsOWtxhvYf1-ZDS0UepqB94OZp6o-SLiWAOYLS-hQ1wBdDaixhjfVudQG604q83bb277uivSues_8DICAjTyvwk0Scd7n5YWCeDqGvIRjcnP0Yl4CTSIQ-xyHmHbiidwqdpQouzUuSbgUxJpd4v2SVxGT4MNQgrlIHKfoywz0Ej3xZXU2uonp6nVeVI93X3_efq_vH779uL25r70y3VprMhgaCE1rhsZr1UozgEQITgfqg3SS9NCErnWOjNItIY7YKz2AGkl7UBfV51Nv-efXgXi1c2RP0-QSLQe2PbZKaamxOD_-43xeDjmV4yz2skODRm598uQqTzFnGu0-x9nlo5VgN-z2hN0W7HbDbrfMp9dmx95NYwHkI_8JIhjVI_TFhycfFyntKP-94P_lvwEV-pKm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918272710</pqid></control><display><type>article</type><title>An improved hydrodynamic model describing heat generation and transport in submicron silicon devices</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Muscato, O. ; Di Stefano, V. ; Milazzo, C.</creator><creatorcontrib>Muscato, O. ; Di Stefano, V. ; Milazzo, C.</creatorcontrib><description>An hydrodynamic model for electron and phonon transport in silicon semiconductors has been formulated, on the basis of the Maximum Entropy Principle, in order to describe off-equilibrium phenomena in submicron silicon devices.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-008-0252-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Computational fluid dynamics ; Condensed matter: structure, mechanical and thermal properties ; Electrical Engineering ; Engineering ; Exact sciences and technology ; Fluid flow ; Heat generation ; Hydrodynamics ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Maximum entropy ; Mechanical Engineering ; Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves ; Optical and Electronic Materials ; Physics ; Semiconductors ; Silicon devices ; Theoretical ; Transport ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Journal of computational electronics, 2008-09, Vol.7 (3), p.142-145</ispartof><rights>Springer Science+Business Media LLC 2008</rights><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media LLC 2008.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-5e72d40d467b4c53617b0120da5de9d1a1e5b4d86aae7356e22f2935b03fe5c03</citedby><cites>FETCH-LOGICAL-c378t-5e72d40d467b4c53617b0120da5de9d1a1e5b4d86aae7356e22f2935b03fe5c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-008-0252-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918272710?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,21388,23930,23931,25140,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20739209$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Muscato, O.</creatorcontrib><creatorcontrib>Di Stefano, V.</creatorcontrib><creatorcontrib>Milazzo, C.</creatorcontrib><title>An improved hydrodynamic model describing heat generation and transport in submicron silicon devices</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>An hydrodynamic model for electron and phonon transport in silicon semiconductors has been formulated, on the basis of the Maximum Entropy Principle, in order to describe off-equilibrium phenomena in submicron silicon devices.</description><subject>Computational fluid dynamics</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Heat generation</subject><subject>Hydrodynamics</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Maximum entropy</subject><subject>Mechanical Engineering</subject><subject>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Semiconductors</subject><subject>Silicon devices</subject><subject>Theoretical</subject><subject>Transport</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1r3DAQhk1poGmSH9CboJSenI5GlmUfQ2jaQiCX5ixkabxRsOWtxhvYf1-ZDS0UepqB94OZp6o-SLiWAOYLS-hQ1wBdDaixhjfVudQG604q83bb277uivSues_8DICAjTyvwk0Scd7n5YWCeDqGvIRjcnP0Yl4CTSIQ-xyHmHbiidwqdpQouzUuSbgUxJpd4v2SVxGT4MNQgrlIHKfoywz0Ej3xZXU2uonp6nVeVI93X3_efq_vH779uL25r70y3VprMhgaCE1rhsZr1UozgEQITgfqg3SS9NCErnWOjNItIY7YKz2AGkl7UBfV51Nv-efXgXi1c2RP0-QSLQe2PbZKaamxOD_-43xeDjmV4yz2skODRm598uQqTzFnGu0-x9nlo5VgN-z2hN0W7HbDbrfMp9dmx95NYwHkI_8JIhjVI_TFhycfFyntKP-94P_lvwEV-pKm</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Muscato, O.</creator><creator>Di Stefano, V.</creator><creator>Milazzo, C.</creator><general>Springer US</general><general>Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080901</creationdate><title>An improved hydrodynamic model describing heat generation and transport in submicron silicon devices</title><author>Muscato, O. ; Di Stefano, V. ; Milazzo, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-5e72d40d467b4c53617b0120da5de9d1a1e5b4d86aae7356e22f2935b03fe5c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computational fluid dynamics</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Heat generation</topic><topic>Hydrodynamics</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Maximum entropy</topic><topic>Mechanical Engineering</topic><topic>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Semiconductors</topic><topic>Silicon devices</topic><topic>Theoretical</topic><topic>Transport</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muscato, O.</creatorcontrib><creatorcontrib>Di Stefano, V.</creatorcontrib><creatorcontrib>Milazzo, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muscato, O.</au><au>Di Stefano, V.</au><au>Milazzo, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved hydrodynamic model describing heat generation and transport in submicron silicon devices</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>7</volume><issue>3</issue><spage>142</spage><epage>145</epage><pages>142-145</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>An hydrodynamic model for electron and phonon transport in silicon semiconductors has been formulated, on the basis of the Maximum Entropy Principle, in order to describe off-equilibrium phenomena in submicron silicon devices.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10825-008-0252-0</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2008-09, Vol.7 (3), p.142-145
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_miscellaneous_926335152
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Computational fluid dynamics
Condensed matter: structure, mechanical and thermal properties
Electrical Engineering
Engineering
Exact sciences and technology
Fluid flow
Heat generation
Hydrodynamics
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical models
Maximum entropy
Mechanical Engineering
Nonelectronic thermal conduction and heat-pulse propagation in solids
thermal waves
Optical and Electronic Materials
Physics
Semiconductors
Silicon devices
Theoretical
Transport
Transport properties of condensed matter (nonelectronic)
title An improved hydrodynamic model describing heat generation and transport in submicron silicon devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A26%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20hydrodynamic%20model%20describing%20heat%20generation%20and%20transport%20in%20submicron%20silicon%20devices&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Muscato,%20O.&rft.date=2008-09-01&rft.volume=7&rft.issue=3&rft.spage=142&rft.epage=145&rft.pages=142-145&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-008-0252-0&rft_dat=%3Cproquest_cross%3E2918272710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918272710&rft_id=info:pmid/&rfr_iscdi=true