Computing the apparent permeability of an array of staggered square rods using volume-penalization

► We propose a computational model for the apparent permeability of porous media. ► Pore-scale simulation of incompressible flow is performed using volume-penalization. ► Primary advantage is easy representation of complex domains on Cartesian grid. ► Apparent permeability predictions computed for a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2011-12, Vol.51 (1), p.157-173
Hauptverfasser: Lopez Penha, D.J., Geurts, B.J., Stolz, S., Nordlund, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:► We propose a computational model for the apparent permeability of porous media. ► Pore-scale simulation of incompressible flow is performed using volume-penalization. ► Primary advantage is easy representation of complex domains on Cartesian grid. ► Apparent permeability predictions computed for array of staggered square rods. ► Investigated effects of Reynolds number, porosity and flow direction. In the present paper we uncover through numerical simulation the velocity and pressure fields inside a model porous medium composed of an infinitely extending array of staggered square rods. These microtransport simulations allow for the prediction of macrotransport parameters that are of value to the volume-averaged description of fluid motion in porous media. We focus on computing the macroscopic apparent permeability and investigate its dependence on the Reynolds number, the porosity, and the flow direction. For the microtransport simulations a volume-penalizing immersed boundary method is presented that facilitates the computation of fluid transport in porous media, accounting for the full geometrical complexity of the porous medium. We represent porous media on uniform Cartesian grids and separate solid from fluid domains using a binary phase-indicator function. The effect of solid bodies on the fluid motion is modeled using a source term in the momentum equation. This source term approximates the no-slip condition at the solid–fluid interface.
ISSN:0045-7930
1879-0747
DOI:10.1016/j.compfluid.2011.08.011