Development of hard/soft ferrite nanocomposite for enhanced microwave absorption
Nickel and zinc substituted strontium hexaferrite, SrFe 11Zn 0.5Ni 0.5O 19 (SrFe 12O 19/NiFe 2O 4/ZnFe 2O 4) nanoparticles having super paramagnetic nature are synthesized by co-precipitation of chloride salts using 7.5 M sodium hydroxide solution. The resulting precursors are heat treated (HT) at 9...
Gespeichert in:
Veröffentlicht in: | Ceramics international 2011-09, Vol.37 (7), p.2631-2641 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nickel and zinc substituted strontium hexaferrite, SrFe
11Zn
0.5Ni
0.5O
19 (SrFe
12O
19/NiFe
2O
4/ZnFe
2O
4) nanoparticles having super paramagnetic nature are synthesized by co-precipitation of chloride salts using 7.5
M sodium hydroxide solution. The resulting precursors are heat treated (HT) at 900 and 1200
°C for 4
h in nitrogen atmosphere. During heat treatment, transformation proceeds as a constant rate of nucleation and three dimensional growth with an activation energy of 176.79
kJ/mol. The hysteresis loops show an increase in saturation magnetization from 1.042 to 59.789
emu/g with increasing HT temperatures. The ‘as-synthesized’ particles with spherical and needle shapes have size in the range of 20–25
nm. Further, these spherical and needle shaped nanoparticles tend to change their morphology to hexagonal plate and pyramidal shapes with increase in HT temperatures. The effect of such a systematic morphological transformation of nanoparticles on dielectric (complex permittivity and permeability) and microwave absorption properties are estimated in X band (8.2–12.2
GHz). The maximum reflection loss of the composite reaches −29.62
dB (99% power attenuation) at 10.21
GHz which suits its application in RADAR absorbing materials. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2011.04.012 |