Energy demand projection of China using a path-coefficient analysis and PSO–GA approach

► The effect mechanism of China’s energy demand is investigated detailedly. ► A hybrid algorithm PSO–GA optimal energy demands estimating model for China. ► China’s energy demand will reach 4.48 billion tce in 2015. ► The proposed method forecast shows its superiority compared with others. Energy de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2012, Vol.53 (1), p.142-153
Hauptverfasser: Yu, Shiwei, Zhu, Kejun, Zhang, Xian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:► The effect mechanism of China’s energy demand is investigated detailedly. ► A hybrid algorithm PSO–GA optimal energy demands estimating model for China. ► China’s energy demand will reach 4.48 billion tce in 2015. ► The proposed method forecast shows its superiority compared with others. Energy demand projection is fundamental to rational energy planning formulation. The present study investigates the direct and indirect effects of five factors, namely GDP, population, proportion of industrial, proportion of urban population and coal percentage of total energy consumption on China’s energy demand, implementing a path-coefficient analysis. On this basis, a hybrid algorithm, Particle Swarm Optimization and Genetic Algorithm optimal Energy Demand Estimating (PSO–GA EDE) model, is proposed for China. The coefficients of the three forms of the model (linear, exponential and quadratic model) are optimized by proposed PSO–GA. To obtain a combinational prediction of three forms, a departure coefficient method is applied to get the combinational weights. The results show that the China’s energy demand will be 4.48 billion tce in 2015. Furthermore; the proposed method forecast shows its superiority compared with other single optimization method such as GA, PSO or ACO and multiple linear regressions.
ISSN:0196-8904
1879-2227
DOI:10.1016/j.enconman.2011.08.015