Parallelizing fuzzy rule generation using GPGPU

This article proposes a method to parallelize the process of generating fuzzy if-then rules for pattern classification problems in order to reduce the computational time. The proposed method makes use of general purpose computation on graphics processing units (GPGPUs)’ parallel implementation with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial life and robotics 2011-09, Vol.16 (2), p.214-218
Hauptverfasser: Uenishi, Takesuke, Nakashima, Tomoharu, Fujimoto, Noriyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes a method to parallelize the process of generating fuzzy if-then rules for pattern classification problems in order to reduce the computational time. The proposed method makes use of general purpose computation on graphics processing units (GPGPUs)’ parallel implementation with compute unified device architecture (CUDA), a development environment. CUDA contains a library to perform matrix operations in parallel. In the proposed method, published source codes of matrix multiplication are modified so that the membership values of given training patterns with antecedent fuzzy sets are calculated. In a series of computational experiments, it is shown that the computational time is reduced for those problems that require high computational effort.
ISSN:1433-5298
1614-7456
DOI:10.1007/s10015-011-0920-1