Multi-objective design of hierarchical consensus functions for clustering ensembles via genetic programming
This paper investigates a genetic programming (GP) approach aimed at the multi-objective design of hierarchical consensus functions for clustering ensembles. By this means, data partitions obtained via different clustering techniques can be continuously refined (via selection and merging) by a popul...
Gespeichert in:
Veröffentlicht in: | Decision Support Systems 2011-11, Vol.51 (4), p.794-809 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates a genetic programming (GP) approach aimed at the multi-objective design of hierarchical consensus functions for clustering ensembles. By this means, data partitions obtained via different clustering techniques can be continuously refined (via selection and merging) by a population of fusion hierarchies having complementary validation indices as objective functions. To assess the potential of the novel framework in terms of efficiency and effectiveness, a series of systematic experiments, involving eleven variants of the proposed GP-based algorithm and a comparison with basic as well as advanced clustering methods (of which some are clustering ensembles and/or multi-objective in nature), have been conducted on a number of artificial, benchmark and bioinformatics datasets. Overall, the results corroborate the perspective that having fusion hierarchies operating on well-chosen subsets of data partitions is a fine strategy that may yield significant gains in terms of clustering robustness. |
---|---|
ISSN: | 0167-9236 1873-5797 |
DOI: | 10.1016/j.dss.2011.01.014 |