A note on diameter and the degree sequence of a graph
In this note, we use a technique introduced by Dankelmann and Entringer [P. Dankelmann, R.C. Entringer, Average distance, minimum degree and spanning trees, J. Graph Theory 33 (2000) 1–13] to obtain a strengthening of an old classical theorem by Erdős, Pach, Pollack and Tuza [P. Erdős, J. Pach, R. P...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2012-02, Vol.25 (2), p.175-178 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we use a technique introduced by Dankelmann and Entringer [P. Dankelmann, R.C. Entringer, Average distance, minimum degree and spanning trees, J. Graph Theory 33 (2000) 1–13] to obtain a strengthening of an old classical theorem by Erdős, Pach, Pollack and Tuza [P. Erdős, J. Pach, R. Pollack, Z. Tuza, Radius, diameter, and minimum degree, J. Combin. Theory B 47 (1989) 73–79] on diameter and minimum degree. To be precise, we will prove that if
G
is a connected graph of order
n
and minimum degree
δ
, then its diameter does not exceed
3
(
n
−
t
)
δ
+
1
+
O
(
1
)
,
where
t
is the number of distinct terms of the degree sequence of
G
. The featured parameter,
t
, is attractive in nature and promising; more discoveries on it in relation to other graph parameters are envisaged. |
---|---|
ISSN: | 0893-9659 1873-5452 |
DOI: | 10.1016/j.aml.2011.08.010 |