Atomistic modeling of hole transport in ultra-thin body SOI pMOSFETs
Atomistic hole transport simulation based on a nonequilibrium Green’s function method and tight-binding approximation has been performed for four types of ultra-thin double-gate silicon-on-insulator MOSFETs; (i) 〈100〉 channel device on (100) substrate, (ii) 〈110〉 channel device on (100) substrate, (...
Gespeichert in:
Veröffentlicht in: | Journal of computational electronics 2008-09, Vol.7 (3), p.293-296 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 296 |
---|---|
container_issue | 3 |
container_start_page | 293 |
container_title | Journal of computational electronics |
container_volume | 7 |
creator | Minari, Hideki Mori, Nobuya |
description | Atomistic hole transport simulation based on a nonequilibrium Green’s function method and tight-binding approximation has been performed for four types of ultra-thin double-gate silicon-on-insulator MOSFETs; (i) 〈100〉 channel device on (100) substrate, (ii) 〈110〉 channel device on (100) substrate, (iii) 〈100〉 channel device on (110) substrate, and (iv) 〈110〉 channel device on (110) substrate. Simulation results show that the difference in crystalline orientation of the devices greatly affects ballistic hole current due to a strong confinement-induced mixing of heavy- and light-hole states. |
doi_str_mv | 10.1007/s10825-007-0161-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926321452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926321452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-995f543e8be915703d16b3ba1ce65823a6dfc08db66c7dc9145e6c75275d48be3</originalsourceid><addsrcrecordid>eNp1kM1LwzAAxYsoOD_-AG8BEU_RfKc5jvk1mOwwPYc0TbeOrqlJd9h_b0qHguApL8nvPR4vy24wesAIyceIUU44TBIiLDCUJ9kEc0lgjqk8HbRQMEeEn2cXMW4RIogwPMmepr3f1bGvLdj50jV1uwa-AhvfONAH08bOhx7ULdg36Qr7TZKFLw9gtZyD7n25enn-iFfZWWWa6K6P52X2mZ5nb3CxfJ3Ppgtoqcx7qBSvOKMuL5xK3RAtsShoYbB1gueEGlFWFuVlIYSVpVWYcZcUJ5KXLJnoZXY_5nbBf-1d7HWqbl3TmNb5fdSKCEqSiyTy9g-59fvQpnKaKJwTwRRTicIjZYOPMbhKd6HemXDQGOlhVj3Oqgc5zKpl8twdk020pqnSRraOP0aCJFWEscSRkYvpq1278Nvg__BvK2CFRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918264949</pqid></control><display><type>article</type><title>Atomistic modeling of hole transport in ultra-thin body SOI pMOSFETs</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Minari, Hideki ; Mori, Nobuya</creator><creatorcontrib>Minari, Hideki ; Mori, Nobuya</creatorcontrib><description>Atomistic hole transport simulation based on a nonequilibrium Green’s function method and tight-binding approximation has been performed for four types of ultra-thin double-gate silicon-on-insulator MOSFETs; (i) 〈100〉 channel device on (100) substrate, (ii) 〈110〉 channel device on (100) substrate, (iii) 〈100〉 channel device on (110) substrate, and (iv) 〈110〉 channel device on (110) substrate. Simulation results show that the difference in crystalline orientation of the devices greatly affects ballistic hole current due to a strong confinement-induced mixing of heavy- and light-hole states.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-007-0161-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Approximation ; Channels ; Computer simulation ; Crystal structure ; Devices ; Electrical Engineering ; Electronics ; Engineering ; Exact sciences and technology ; Green's functions ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; MOSFETs ; Optical and Electronic Materials ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Substrates ; Theoretical ; Thin bodies ; Transistors ; Transport</subject><ispartof>Journal of computational electronics, 2008-09, Vol.7 (3), p.293-296</ispartof><rights>Springer Science+Business Media LLC 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media LLC 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-995f543e8be915703d16b3ba1ce65823a6dfc08db66c7dc9145e6c75275d48be3</citedby><cites>FETCH-LOGICAL-c378t-995f543e8be915703d16b3ba1ce65823a6dfc08db66c7dc9145e6c75275d48be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-007-0161-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918264949?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,21369,23911,23912,25121,27905,27906,33725,33726,41469,42538,43786,51300,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20739244$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Minari, Hideki</creatorcontrib><creatorcontrib>Mori, Nobuya</creatorcontrib><title>Atomistic modeling of hole transport in ultra-thin body SOI pMOSFETs</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>Atomistic hole transport simulation based on a nonequilibrium Green’s function method and tight-binding approximation has been performed for four types of ultra-thin double-gate silicon-on-insulator MOSFETs; (i) 〈100〉 channel device on (100) substrate, (ii) 〈110〉 channel device on (100) substrate, (iii) 〈100〉 channel device on (110) substrate, and (iv) 〈110〉 channel device on (110) substrate. Simulation results show that the difference in crystalline orientation of the devices greatly affects ballistic hole current due to a strong confinement-induced mixing of heavy- and light-hole states.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Crystal structure</subject><subject>Devices</subject><subject>Electrical Engineering</subject><subject>Electronics</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Green's functions</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>MOSFETs</subject><subject>Optical and Electronic Materials</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Substrates</subject><subject>Theoretical</subject><subject>Thin bodies</subject><subject>Transistors</subject><subject>Transport</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LwzAAxYsoOD_-AG8BEU_RfKc5jvk1mOwwPYc0TbeOrqlJd9h_b0qHguApL8nvPR4vy24wesAIyceIUU44TBIiLDCUJ9kEc0lgjqk8HbRQMEeEn2cXMW4RIogwPMmepr3f1bGvLdj50jV1uwa-AhvfONAH08bOhx7ULdg36Qr7TZKFLw9gtZyD7n25enn-iFfZWWWa6K6P52X2mZ5nb3CxfJ3Ppgtoqcx7qBSvOKMuL5xK3RAtsShoYbB1gueEGlFWFuVlIYSVpVWYcZcUJ5KXLJnoZXY_5nbBf-1d7HWqbl3TmNb5fdSKCEqSiyTy9g-59fvQpnKaKJwTwRRTicIjZYOPMbhKd6HemXDQGOlhVj3Oqgc5zKpl8twdk020pqnSRraOP0aCJFWEscSRkYvpq1278Nvg__BvK2CFRg</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Minari, Hideki</creator><creator>Mori, Nobuya</creator><general>Springer US</general><general>Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080901</creationdate><title>Atomistic modeling of hole transport in ultra-thin body SOI pMOSFETs</title><author>Minari, Hideki ; Mori, Nobuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-995f543e8be915703d16b3ba1ce65823a6dfc08db66c7dc9145e6c75275d48be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Crystal structure</topic><topic>Devices</topic><topic>Electrical Engineering</topic><topic>Electronics</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Green's functions</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>MOSFETs</topic><topic>Optical and Electronic Materials</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Substrates</topic><topic>Theoretical</topic><topic>Thin bodies</topic><topic>Transistors</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minari, Hideki</creatorcontrib><creatorcontrib>Mori, Nobuya</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minari, Hideki</au><au>Mori, Nobuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic modeling of hole transport in ultra-thin body SOI pMOSFETs</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>7</volume><issue>3</issue><spage>293</spage><epage>296</epage><pages>293-296</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>Atomistic hole transport simulation based on a nonequilibrium Green’s function method and tight-binding approximation has been performed for four types of ultra-thin double-gate silicon-on-insulator MOSFETs; (i) 〈100〉 channel device on (100) substrate, (ii) 〈110〉 channel device on (100) substrate, (iii) 〈100〉 channel device on (110) substrate, and (iv) 〈110〉 channel device on (110) substrate. Simulation results show that the difference in crystalline orientation of the devices greatly affects ballistic hole current due to a strong confinement-induced mixing of heavy- and light-hole states.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10825-007-0161-7</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8025 |
ispartof | Journal of computational electronics, 2008-09, Vol.7 (3), p.293-296 |
issn | 1569-8025 1572-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_926321452 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Applied sciences Approximation Channels Computer simulation Crystal structure Devices Electrical Engineering Electronics Engineering Exact sciences and technology Green's functions Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mechanical Engineering MOSFETs Optical and Electronic Materials Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Substrates Theoretical Thin bodies Transistors Transport |
title | Atomistic modeling of hole transport in ultra-thin body SOI pMOSFETs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20modeling%20of%20hole%20transport%20in%20ultra-thin%20body%20SOI%20pMOSFETs&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Minari,%20Hideki&rft.date=2008-09-01&rft.volume=7&rft.issue=3&rft.spage=293&rft.epage=296&rft.pages=293-296&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-007-0161-7&rft_dat=%3Cproquest_cross%3E926321452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918264949&rft_id=info:pmid/&rfr_iscdi=true |