Atomistic modeling of hole transport in ultra-thin body SOI pMOSFETs

Atomistic hole transport simulation based on a nonequilibrium Green’s function method and tight-binding approximation has been performed for four types of ultra-thin double-gate silicon-on-insulator MOSFETs; (i) 〈100〉 channel device on (100) substrate, (ii) 〈110〉 channel device on (100) substrate, (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational electronics 2008-09, Vol.7 (3), p.293-296
Hauptverfasser: Minari, Hideki, Mori, Nobuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 296
container_issue 3
container_start_page 293
container_title Journal of computational electronics
container_volume 7
creator Minari, Hideki
Mori, Nobuya
description Atomistic hole transport simulation based on a nonequilibrium Green’s function method and tight-binding approximation has been performed for four types of ultra-thin double-gate silicon-on-insulator MOSFETs; (i) 〈100〉 channel device on (100) substrate, (ii) 〈110〉 channel device on (100) substrate, (iii) 〈100〉 channel device on (110) substrate, and (iv) 〈110〉 channel device on (110) substrate. Simulation results show that the difference in crystalline orientation of the devices greatly affects ballistic hole current due to a strong confinement-induced mixing of heavy- and light-hole states.
doi_str_mv 10.1007/s10825-007-0161-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926321452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926321452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-995f543e8be915703d16b3ba1ce65823a6dfc08db66c7dc9145e6c75275d48be3</originalsourceid><addsrcrecordid>eNp1kM1LwzAAxYsoOD_-AG8BEU_RfKc5jvk1mOwwPYc0TbeOrqlJd9h_b0qHguApL8nvPR4vy24wesAIyceIUU44TBIiLDCUJ9kEc0lgjqk8HbRQMEeEn2cXMW4RIogwPMmepr3f1bGvLdj50jV1uwa-AhvfONAH08bOhx7ULdg36Qr7TZKFLw9gtZyD7n25enn-iFfZWWWa6K6P52X2mZ5nb3CxfJ3Ppgtoqcx7qBSvOKMuL5xK3RAtsShoYbB1gueEGlFWFuVlIYSVpVWYcZcUJ5KXLJnoZXY_5nbBf-1d7HWqbl3TmNb5fdSKCEqSiyTy9g-59fvQpnKaKJwTwRRTicIjZYOPMbhKd6HemXDQGOlhVj3Oqgc5zKpl8twdk020pqnSRraOP0aCJFWEscSRkYvpq1278Nvg__BvK2CFRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918264949</pqid></control><display><type>article</type><title>Atomistic modeling of hole transport in ultra-thin body SOI pMOSFETs</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Minari, Hideki ; Mori, Nobuya</creator><creatorcontrib>Minari, Hideki ; Mori, Nobuya</creatorcontrib><description>Atomistic hole transport simulation based on a nonequilibrium Green’s function method and tight-binding approximation has been performed for four types of ultra-thin double-gate silicon-on-insulator MOSFETs; (i) 〈100〉 channel device on (100) substrate, (ii) 〈110〉 channel device on (100) substrate, (iii) 〈100〉 channel device on (110) substrate, and (iv) 〈110〉 channel device on (110) substrate. Simulation results show that the difference in crystalline orientation of the devices greatly affects ballistic hole current due to a strong confinement-induced mixing of heavy- and light-hole states.</description><identifier>ISSN: 1569-8025</identifier><identifier>EISSN: 1572-8137</identifier><identifier>DOI: 10.1007/s10825-007-0161-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Approximation ; Channels ; Computer simulation ; Crystal structure ; Devices ; Electrical Engineering ; Electronics ; Engineering ; Exact sciences and technology ; Green's functions ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mechanical Engineering ; MOSFETs ; Optical and Electronic Materials ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Substrates ; Theoretical ; Thin bodies ; Transistors ; Transport</subject><ispartof>Journal of computational electronics, 2008-09, Vol.7 (3), p.293-296</ispartof><rights>Springer Science+Business Media LLC 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media LLC 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-995f543e8be915703d16b3ba1ce65823a6dfc08db66c7dc9145e6c75275d48be3</citedby><cites>FETCH-LOGICAL-c378t-995f543e8be915703d16b3ba1ce65823a6dfc08db66c7dc9145e6c75275d48be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10825-007-0161-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918264949?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,21369,23911,23912,25121,27905,27906,33725,33726,41469,42538,43786,51300,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20739244$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Minari, Hideki</creatorcontrib><creatorcontrib>Mori, Nobuya</creatorcontrib><title>Atomistic modeling of hole transport in ultra-thin body SOI pMOSFETs</title><title>Journal of computational electronics</title><addtitle>J Comput Electron</addtitle><description>Atomistic hole transport simulation based on a nonequilibrium Green’s function method and tight-binding approximation has been performed for four types of ultra-thin double-gate silicon-on-insulator MOSFETs; (i) 〈100〉 channel device on (100) substrate, (ii) 〈110〉 channel device on (100) substrate, (iii) 〈100〉 channel device on (110) substrate, and (iv) 〈110〉 channel device on (110) substrate. Simulation results show that the difference in crystalline orientation of the devices greatly affects ballistic hole current due to a strong confinement-induced mixing of heavy- and light-hole states.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Crystal structure</subject><subject>Devices</subject><subject>Electrical Engineering</subject><subject>Electronics</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Green's functions</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanical Engineering</subject><subject>MOSFETs</subject><subject>Optical and Electronic Materials</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Substrates</subject><subject>Theoretical</subject><subject>Thin bodies</subject><subject>Transistors</subject><subject>Transport</subject><issn>1569-8025</issn><issn>1572-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LwzAAxYsoOD_-AG8BEU_RfKc5jvk1mOwwPYc0TbeOrqlJd9h_b0qHguApL8nvPR4vy24wesAIyceIUU44TBIiLDCUJ9kEc0lgjqk8HbRQMEeEn2cXMW4RIogwPMmepr3f1bGvLdj50jV1uwa-AhvfONAH08bOhx7ULdg36Qr7TZKFLw9gtZyD7n25enn-iFfZWWWa6K6P52X2mZ5nb3CxfJ3Ppgtoqcx7qBSvOKMuL5xK3RAtsShoYbB1gueEGlFWFuVlIYSVpVWYcZcUJ5KXLJnoZXY_5nbBf-1d7HWqbl3TmNb5fdSKCEqSiyTy9g-59fvQpnKaKJwTwRRTicIjZYOPMbhKd6HemXDQGOlhVj3Oqgc5zKpl8twdk020pqnSRraOP0aCJFWEscSRkYvpq1278Nvg__BvK2CFRg</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Minari, Hideki</creator><creator>Mori, Nobuya</creator><general>Springer US</general><general>Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080901</creationdate><title>Atomistic modeling of hole transport in ultra-thin body SOI pMOSFETs</title><author>Minari, Hideki ; Mori, Nobuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-995f543e8be915703d16b3ba1ce65823a6dfc08db66c7dc9145e6c75275d48be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Crystal structure</topic><topic>Devices</topic><topic>Electrical Engineering</topic><topic>Electronics</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Green's functions</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanical Engineering</topic><topic>MOSFETs</topic><topic>Optical and Electronic Materials</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Substrates</topic><topic>Theoretical</topic><topic>Thin bodies</topic><topic>Transistors</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minari, Hideki</creatorcontrib><creatorcontrib>Mori, Nobuya</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minari, Hideki</au><au>Mori, Nobuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic modeling of hole transport in ultra-thin body SOI pMOSFETs</atitle><jtitle>Journal of computational electronics</jtitle><stitle>J Comput Electron</stitle><date>2008-09-01</date><risdate>2008</risdate><volume>7</volume><issue>3</issue><spage>293</spage><epage>296</epage><pages>293-296</pages><issn>1569-8025</issn><eissn>1572-8137</eissn><abstract>Atomistic hole transport simulation based on a nonequilibrium Green’s function method and tight-binding approximation has been performed for four types of ultra-thin double-gate silicon-on-insulator MOSFETs; (i) 〈100〉 channel device on (100) substrate, (ii) 〈110〉 channel device on (100) substrate, (iii) 〈100〉 channel device on (110) substrate, and (iv) 〈110〉 channel device on (110) substrate. Simulation results show that the difference in crystalline orientation of the devices greatly affects ballistic hole current due to a strong confinement-induced mixing of heavy- and light-hole states.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10825-007-0161-7</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-8025
ispartof Journal of computational electronics, 2008-09, Vol.7 (3), p.293-296
issn 1569-8025
1572-8137
language eng
recordid cdi_proquest_miscellaneous_926321452
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Applied sciences
Approximation
Channels
Computer simulation
Crystal structure
Devices
Electrical Engineering
Electronics
Engineering
Exact sciences and technology
Green's functions
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mechanical Engineering
MOSFETs
Optical and Electronic Materials
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Substrates
Theoretical
Thin bodies
Transistors
Transport
title Atomistic modeling of hole transport in ultra-thin body SOI pMOSFETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A16%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20modeling%20of%20hole%20transport%20in%20ultra-thin%20body%20SOI%20pMOSFETs&rft.jtitle=Journal%20of%20computational%20electronics&rft.au=Minari,%20Hideki&rft.date=2008-09-01&rft.volume=7&rft.issue=3&rft.spage=293&rft.epage=296&rft.pages=293-296&rft.issn=1569-8025&rft.eissn=1572-8137&rft_id=info:doi/10.1007/s10825-007-0161-7&rft_dat=%3Cproquest_cross%3E926321452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918264949&rft_id=info:pmid/&rfr_iscdi=true