Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends
This article assesses the effect of mix design parameters on the compressive strength and thermal performance of alkali silicate-activated blends of metakaolin (MK) and granulated blast furnace slag (GBFS). A strong interrelationship between the effects of activator composition and the GBFS/(GBFS + ...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2011-08, Vol.46 (16), p.5477-5486 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article assesses the effect of mix design parameters on the compressive strength and thermal performance of alkali silicate-activated blends of metakaolin (MK) and granulated blast furnace slag (GBFS). A strong interrelationship between the effects of activator composition and the GBFS/(GBFS + MK) ratio is identified through statistical analysis of compressive strength data. Pastes formulated with higher SiO
2
/Al
2
O
3
molar ratios show improvements in mechanical strength with increasing GBFS addition, associated with the formation of a structure comprising coexisting aluminosilicate ‘geopolymer’ gel and Ca-rich Al-substituted silicate hydrate (C-(A)-S-H) reaction products. The inclusion of GBFS in MK-based geopolymers seems also to improve their performance when exposed to high temperatures, as higher residual compressive strengths are reported for these mixtures compared to solely MK-based systems. Only slight differences in shrinkage behaviour are observed at temperatures of up to 600 °C with the inclusion of GBFS; however, slag-blended pastes exhibit enhanced stability at temperatures exceeding 800 °C, as no variation in the compressive strength and no additional shrinkage are identified. These results suggest that nanostructural modifications are induced in the gel by the inclusion of GBFS into MK-based geopolymers, improving the overall performance of these materials. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-011-5490-z |