Groups with few conjugacy classes
Let G be a finite group, let p be a prime divisor of the order of G and let k(G) be the number of conjugacy classes of G. By disregarding at most finitely many non-solvable p-solvable groups G, we have $k(G)\geq2\smash{\sqrt{p-1}}$ with equality if and only if if $\smash{\sqrt{p-1}}$ is an integer,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2011-06, Vol.54 (2), p.423-430 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a finite group, let p be a prime divisor of the order of G and let k(G) be the number of conjugacy classes of G. By disregarding at most finitely many non-solvable p-solvable groups G, we have $k(G)\geq2\smash{\sqrt{p-1}}$ with equality if and only if if $\smash{\sqrt{p-1}}$ is an integer, $G=C_{p}\rtimes\smash{C_{\sqrt{p-1}}}$ and CG(Cp) = Cp. This extends earlier work of Héthelyi, Külshammer, Malle and Keller. |
---|---|
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S001309150900176X |