Groups with few conjugacy classes

Let G be a finite group, let p be a prime divisor of the order of G and let k(G) be the number of conjugacy classes of G. By disregarding at most finitely many non-solvable p-solvable groups G, we have $k(G)\geq2\smash{\sqrt{p-1}}$ with equality if and only if if $\smash{\sqrt{p-1}}$ is an integer,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2011-06, Vol.54 (2), p.423-430
Hauptverfasser: Héthelyi, László, Horváth, Erzsébet, Keller, Thomas Michael, Maróti, Attila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a finite group, let p be a prime divisor of the order of G and let k(G) be the number of conjugacy classes of G. By disregarding at most finitely many non-solvable p-solvable groups G, we have $k(G)\geq2\smash{\sqrt{p-1}}$ with equality if and only if if $\smash{\sqrt{p-1}}$ is an integer, $G=C_{p}\rtimes\smash{C_{\sqrt{p-1}}}$ and CG(Cp) = Cp. This extends earlier work of Héthelyi, Külshammer, Malle and Keller.
ISSN:0013-0915
1464-3839
DOI:10.1017/S001309150900176X