A Physical Model for Fringe Capacitance in Double-Gate MOSFETs With Non-Abrupt Source/Drain Junctions and Gate Underlap

For the first time, the inner and outer components of the parasitic gate-source/drain (G-S/D) fringe capacitance in nanoscale double-gate (DG) metal-oxide-semiconductor field-effect transistors, with nonabrupt S/D-body junctions that define effective G-S/D underlap, are physically modeled in terms o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2010-05, Vol.57 (5), p.1069-1075
Hauptverfasser: Agrawal, Shishir, Fossum, Jerry G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the first time, the inner and outer components of the parasitic gate-source/drain (G-S/D) fringe capacitance in nanoscale double-gate (DG) metal-oxide-semiconductor field-effect transistors, with nonabrupt S/D-body junctions that define effective G-S/D underlap, are physically modeled in terms of the device structure. The model relates the fringe capacitance to the device short-channel effects as governed by the underlap and, hence, gives insights on the effective channel length. The model is verified by numerical simulations of DG devices with varying device parameters, including the dielectric constant of the G-S/D spacer.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2010.2044266