A Physical Model for Fringe Capacitance in Double-Gate MOSFETs With Non-Abrupt Source/Drain Junctions and Gate Underlap
For the first time, the inner and outer components of the parasitic gate-source/drain (G-S/D) fringe capacitance in nanoscale double-gate (DG) metal-oxide-semiconductor field-effect transistors, with nonabrupt S/D-body junctions that define effective G-S/D underlap, are physically modeled in terms o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2010-05, Vol.57 (5), p.1069-1075 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the first time, the inner and outer components of the parasitic gate-source/drain (G-S/D) fringe capacitance in nanoscale double-gate (DG) metal-oxide-semiconductor field-effect transistors, with nonabrupt S/D-body junctions that define effective G-S/D underlap, are physically modeled in terms of the device structure. The model relates the fringe capacitance to the device short-channel effects as governed by the underlap and, hence, gives insights on the effective channel length. The model is verified by numerical simulations of DG devices with varying device parameters, including the dielectric constant of the G-S/D spacer. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2010.2044266 |