Four-Leg-Based Fault-Tolerant Matrix Converter Schemes Based on Switching Function and Space Vector Methods
A four-leg-based fault-tolerant matrix converter topology is proposed, along with switching function and space vector approaches for modulation schemes, to improve the reliability of matrix converter drives. The four-leg-based fault-tolerant structure utilizes an additional redundant phase module. B...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2012-01, Vol.59 (1), p.235-243 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A four-leg-based fault-tolerant matrix converter topology is proposed, along with switching function and space vector approaches for modulation schemes, to improve the reliability of matrix converter drives. The four-leg-based fault-tolerant structure utilizes an additional redundant phase module. Based on the reconfigured hardware topology, fault-tolerant modulation strategies with both switching function and space vector approaches are developed to provide the matrix converter drives with continuous and disturbance-free operation. Pulsewidth-modulated algorithms with closed-form expressions, based on a switching function matrix, are presented to synthesize redefined output waveforms with reconfigured converter structures. Furthermore, a space-vector-based scheme using the indirect equivalent circuit with the fictitious dc link is also developed for the fault-tolerant topology after failures. Experimental results show the feasibility of the proposed four-leg-based fault-remedial approach, along with the developed modulation techniques. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2011.2143378 |