On collapse of wave maps
We derive the universal collapse law of degree 1 equivariant wave maps (solutions of the sigma model) from the 2+1 Minkowski space–time, to the 2-sphere. To this end, we introduce a nonlinear transformation from original variables to blowup ones. Our formal derivations are confirmed by numerical sim...
Gespeichert in:
Veröffentlicht in: | Physica. D 2011-08, Vol.240 (17), p.1311-1324 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive the universal collapse law of degree 1 equivariant wave maps (solutions of the sigma model) from the 2+1 Minkowski space–time, to the 2-sphere. To this end, we introduce a nonlinear transformation from original variables to blowup ones. Our formal derivations are confirmed by numerical simulations.
In this paper, we consider wave maps (solutions of the sigma model) from the 2+1 Minkowski space–time, to the 2-sphere. We ► derive the universal collapse law of degree 1 equivariant wave maps, ► introduce a nonlinear transformation from original variables to blowup ones, ► present numerical simulations confirming our analytical derivations. |
---|---|
ISSN: | 0167-2789 1872-8022 |
DOI: | 10.1016/j.physd.2011.04.014 |