On collapse of wave maps

We derive the universal collapse law of degree 1 equivariant wave maps (solutions of the sigma model) from the 2+1 Minkowski space–time, to the 2-sphere. To this end, we introduce a nonlinear transformation from original variables to blowup ones. Our formal derivations are confirmed by numerical sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2011-08, Vol.240 (17), p.1311-1324
Hauptverfasser: Ovchinnikov, Yu. N., Sigal, I.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive the universal collapse law of degree 1 equivariant wave maps (solutions of the sigma model) from the 2+1 Minkowski space–time, to the 2-sphere. To this end, we introduce a nonlinear transformation from original variables to blowup ones. Our formal derivations are confirmed by numerical simulations. In this paper, we consider wave maps (solutions of the sigma model) from the 2+1 Minkowski space–time, to the 2-sphere. We ► derive the universal collapse law of degree 1 equivariant wave maps, ► introduce a nonlinear transformation from original variables to blowup ones, ► present numerical simulations confirming our analytical derivations.
ISSN:0167-2789
1872-8022
DOI:10.1016/j.physd.2011.04.014