Contribution to dynamic characteristics of the cutting temperature in the drilling process considering one dimension heat flow

The machining of hardened steels has always been a great challenge in metal cutting, particularly for drilling operations. Generally, drilling is the machining process that is most difficult to cool due to the tool’s geometry. The aim of this work is to determine the heat flux and the coefficient of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2011-12, Vol.31 (17), p.3806-3813
Hauptverfasser: Brandao, Lincoln Cardoso, Coelho, Reginaldo Teixeira, Lauro, Carlos Henrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The machining of hardened steels has always been a great challenge in metal cutting, particularly for drilling operations. Generally, drilling is the machining process that is most difficult to cool due to the tool’s geometry. The aim of this work is to determine the heat flux and the coefficient of convection in drilling using the inverse heat conduction method. Temperature was assessed during the drilling of hardened AISI H13 steel using the embedded thermocouple technique. Dry machining and two cooling/lubrication systems were used, and thermocouples were fixed at distances very close to the hole’s wall. Tests were replicated for each condition, and were carried out with new and worn drills. An analytical heat conduction model was used to calculate the temperature at tool–workpiece interface and to define the heat flux and the coefficient of convection. In all tests using new and worn out drills, the lowest temperatures and decrease of heat flux were observed using the flooded system, followed by the MQL, considering the dry condition as reference. The decrease of temperature was directly proportional to the amount of lubricant applied and was significant in the MQL system when compared to dry cutting. ► We measured the temperature at tool/workpiece interface and we define the heat flux. ► We used the embedded thermocouple technique with two cooling/lubrication systems. ► We determine the heat flux in drilling applying the inverse heat conduction method. ► The lowest temperatures and heat flux values were observed using the flooded system. ► The decrease of temperature was proportional to the amount of lubricant applied.
ISSN:1359-4311
DOI:10.1016/j.applthermaleng.2011.07.024