Area-Efficient Fast-Speed Lateral IGBT With a 3-D n-Region-Controlled Anode
A novel lateral insulated-gate bipolar transistor (LIGBT) structure on an silicon-on-insulator (SOI) substrate is proposed and discussed. The 3-D n-region-controlled anode concept makes this new structure effectively suppress the negative-differential-resistance (NDR) regime in conducting state, and...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2010-05, Vol.31 (5), p.467-469 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel lateral insulated-gate bipolar transistor (LIGBT) structure on an silicon-on-insulator (SOI) substrate is proposed and discussed. The 3-D n-region-controlled anode concept makes this new structure effectively suppress the negative-differential-resistance (NDR) regime in conducting state, and what is more, during turn- off state, there are two effective paths for electron extraction, and the switching speed is very fast. As simulation results show, without sacrificing the high current-handling capability, the ratios of turn-off times for the proposed structure compared to that of the segment-anode-n-p-n-LIGBT presented earlier and the conventional LIGBT are 1 : 1.57 and 1 : 35.58, respectively. Due to the 3-D anode structure, the proposed device has efficient area usage and can be fabricated by the conventional SOI high-voltage IC process, so it is a promising device used in power ICs. |
---|---|
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/LED.2010.2043638 |